Journal of Operative Dentistry & Endodontics

Register      Login

VOLUME 5 , ISSUE 2 ( July-December, 2020 ) > List of Articles


Scaffolds in Regenerative Endodontics: A Review

Malli Sureshbabu Nivedhitha, Selvam Deepak, Benoy Jacob, Riluwan Siddique

Citation Information : Nivedhitha MS, Deepak S, Jacob B, Siddique R. Scaffolds in Regenerative Endodontics: A Review. J Oper Dent Endod 2020; 5 (2):88-98.

DOI: 10.5005/jp-journals-10047-0098

License: CC BY-NC 4.0

Published Online: 01-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Stem cells, scaffolds, and growth factors, each of which possesses unique biological capabilities, constitute what is known as the tissue engineering triad. Recently, regenerative endodontics has emerged as a new field that deals with the rejuvenation of the pulp–dentin complex in necrotic immature permanent teeth, regeneration of bone, periodontal ligament and cementum in cases with large periapical lesion, and regeneration of periodontal tissue and bone in endo-perio lesions. Scaffolds play a major part in the formation of the extracellular matrix by providing support to cells to adhere, grow, and differentiate. In this review, four major categories of scaffolds (autologous platelet concentrates, nanofibrous scaffolds, injectable scaffolds, and bioactive molecule carrier systems) used in regenerative endodontics have been discussed in detail.

  1. Gathani KM, Raghavendra SS. Scaffolds in regenerative endodontics: a review. Dent Res J 2016;13(5):379–386.
  2. Alshehadat SA, Thu HA, Hamid SS, et al. Scaffolds for dental pulp tissue regeneration: a review. Int Dent Med J Adv Res 2016;2(1):1–12. DOI: 10.15713/ins.idmjar.36.
  3. Shrestha S, Kishen A. Bioactive molecule delivery systems for dentin-pulp tissue engineering. J Endod 2017;43(5):733–744. DOI: 10.1016/j.joen.2016.12.020.
  4. Whitman DH, Berry RL, Green DM. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 1997;55(11):1294–1299. DOI: 10.1016/s0278-2391(97)90187-7.
  5. Choukroun J, Adda F, Schoeffer C, et al. PRF: an opportunity in perio-implantology. Implantodontie 2001;42:55–62.
  6. Jadhav G, Shah N, Logani A. Revascularization with and without platelet-rich plasma in nonvital, immature, anterior teeth: a pilot clinical study. J Endod 2012;38(12):1581–1587. DOI: 10.1016/j.joen.2012.09.010.
  7. Bezgin T, Yilmaz AD, Celik BN, et al. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J Endod 2015;41(1):36–44. DOI: 10.1016/j.joen.2014.10.004.
  8. Narang I, Mittal N, Mishra N. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: a clinical study. Contemp Clin Dent 2015;6(1):63–68. DOI: 10.4103/0976-237X.149294.
  9. Alagl A, Bedi S, Hassan K, et al. Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: clinical and cone-beam computed tomography evaluation. J Int Med Res 2017;45(2):583–593. DOI: 10.1177/0300060517692935.
  10. Shivashankar VY, Johns DA, Maroli RK, et al. Comparison of the effect of PRP, PRF and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: a triple blind randomized clinical trial. J Clin Diagn Res 2017;11(6): ZC34–ZC39. DOI: 10.7860/JCDR/2017/22352.10056.
  11. Rizk HM, AL-Deen MS, Emam AA. Regenerative endodontic treatment of bilateral necrotic immature permanent maxillary central incisors with platelet-rich plasma versus blood clot: a split mouth double-blinded randomized controlled trial. Int J Clin Pediatr Dent 2019;12(4):332–339. DOI: 10.5005/jp-journals-10005-1656.
  12. Ulusoy AT, Turedi I, Cimen M, et al. Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: a prospective randomized trial. J Endod 2019;45(5):560–566. DOI: 10.1016/j.joen.2019.02.002.
  13. Ragab RA, Lattif AE, Dokky NA. Comparative study between revitalization of necrotic immature permanent anterior teeth with and without platelet rich fibrin: a randomized controlled trial. J Clin Pediatr Dent 2019;43(2):78–85. DOI: 10.17796/1053-4625-43.2.2.
  14. ElSheshtawy AS, Nazzal H, El Shahawy OI, et al. The effect of platelet‐rich plasma as a scaffold in regeneration/revitalization endodontics of immature permanent teeth assessed using 2‐dimensional radiographs and cone beam computed tomography: a randomized controlled trial. Int Endod J 2020;53(7):905–921.
  15. Meschi N, Castro AB, Vandamme K, et al. The impact of autologous platelet concentrates on endodontic healing: a systematic review. Platelets 2016;27(7):613–633. DOI: 10.1080/09537104.2016.1226497.
  16. Murray PE. Platelet-rich plasma and platelet-rich fibrin can induce apical closure more frequently than blood-clot revascularization for the regeneration of immature permanent teeth: a meta-analysis of clinical efficacy. Front Bioeng Biotechnol 2018;6:139. DOI: 10.3389/fbioe.2018.00139.
  17. Metlerska J, Fagogeni I, Nowicka A. Efficacy of autologous platelet concentrates in regenerative endodontic treatment: a systematic review of human studies. J Endod 2019;45(1):20–30.e1. DOI: 10.1016/j.joen.2018.09.003.
  18. Panda S, Mishra L, Arbildo-Vega HI, et al. Effectiveness of autologous platelet concentrates in management of young immature necrotic permanent teeth—a systematic review and meta-analysis. Cells 2020;9(10):2241. DOI: 10.3390/cells9102241.
  19. Anitua E. Plasma rich in growth factors: preliminary results of use in preparations of future sites for implants. Int J Oral Maxillofac Implants 1999;14(4):529–535.
  20. Hengameh Bakhtiar DD, Mehdi Vatanpour DD, Rayani A, et al. The plasma-rich in growth factor as a suitable matrix in regenerative endodontics: a case series. N Y State Dent J 2014;80(4):49–53.
  21. Del Fabbro M, Ceresoli V, Lolato A, et al. Effect of platelet concentrate on quality of life after periradicular surgery: a randomized clinical study. J Endod 2012;38(6):733–739. DOI: 10.1016/j.joen.2012.02.022.
  22. Taschieri S, Corbella S, Tsesis I, et al. Impact of the use of plasma rich in growth factors (PRGF) on the quality of life of patients treated with endodontic surgery when a perforation of sinus membrane occurred. A comparative study. Oral Maxillofac Surg 2014;18(1):43–52. DOI: 10.1007/s10006-012-0386-x.
  23. Taschieri S, Rosano G, Weinstein T, et al. Treatment of through-and-through bone lesion using autologous growth factors and xenogeneic bone graft: a case report. Oral Maxillofac Surg 2012;16(1):57–64. DOI: 10.1007/s10006-010-0251-8.
  24. Egusa H, Sonoyama W, Nishimura M, et al. Stem cells in dentistry–part I: stem cell sources. J Prosthodont Res 2012;56(3):151–165. DOI: 10.1016/j.jpor.2012.06.001.
  25. Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 2006;1(1):e79. DOI: 10.1371/journal.pone.0000079.
  26. Huang GT-J, Sonoyama W, Liu Y, et al. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008;34(6):645–651. DOI: 10.1016/j.joen.2008.03.001.
  27. Lovelace TW, Henry MA, Hargreaves KM, et al. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod 2011;37(2):133–138. DOI: 10.1016/j.joen.2010.10.009.
  28. Hargreaves KM, Diogenes A, Teixeira FB. Treatment options: biological basis of regenerative endodontic procedures. Pediatr Dent 2013;35(2):129–140.
  29. Rodella LF, Favero G, Boninsegna R, et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc Res Tech 2011;74(8):772–777. DOI: 10.1002/jemt.20968.
  30. Dohan Ehrenfest DM, Pinto NR, Pereda A, et al. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte-and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 2018;29(2):171–184. DOI: 10.1080/09537104.2017.1293812.
  31. Mirković S, Djurdjević-Mirković T, Pugkar T. Application of concentrated growth factors in reconstruction of bone defects after removal of large jaw cysts: the two cases report. Vojnosanit Pregl 2015;72(4):368–371. DOI: 10.2298/vsp1504368m.
  32. Borsani E, Bonazza V, Buffoli B, et al. Biological characterization and in vitro effects of human concentrated growth factor preparation: an innovative approach to tissue regeneration. Biol Med 2015;7(5):1. DOI: 10.4172/0974-8369.1000256.
  33. Sohn DS, Moon JW, Moon YS, et al. The use of concentrated growth factors (CGF) for sinus augmentation. J Oral Implant. 2009;38(1):25–38.
  34. Doan N, Nguyen-Pham L, Liang C, et al. A review on the application of concentrated growth factors and MPhi laser to regenerate oral defects in the oral and maxillofacial region and a two cases report. Int J Oral Maxillofac Surg 2017;46(1):203–204. DOI: 10.1016/j.ijom.2017.02.693.
  35. Rodella LF, Favero G, Boninsegna R, et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc Res Tech 2011;74(8):772–777. DOI: 10.1002/jemt.20968.
  36. Gosiewska A, Yi C-F, Blanc-Brude O, et al. Characterization of a macrophage-based system for studying the activation of latent TGF-β. Methods Cell Sci 1999;21(1):47–56. DOI: 10.1023/a:1009807802589.
  37. Lakey MA, Klein MJ, Faye-Petersen OM. A comprehensive clinicopathologic analysis suggests that vascular endothelial growth factor (VEGF) is the most likely mediator of periosteal new bone formation (PNBF) associated with diverse etiologies. Clin Med Arthritis Musculoskelet Disord 2008;1:CMAMD–S442. DOI: 10.4137/CMAMD.S442.
  38. Park H-C, Kim S-G, Oh J-S, et al. Early bone formation at a femur defect using CGF and PRF grafts in adult dogs: a comparative study. Implant Dent 2016;25(3):387–393. DOI: 10.1097/ID.0000000000000423.
  39. Hong S, Li L, Cai W, et al. The potential application of concentrated growth factor in regenerative endodontics. Int Endod J 2019;52(5):646–655. DOI: 10.1111/iej.13045.
  40. Hong S, Chen W, Jiang B. A comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla. J Endod 2018;44(6):977–983. DOI: 10.1016/j.joen.2018.03.006.
  41. Jin R, Song G, Chai J, et al. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. Journal of tissue engineering. J Tissue Eng 2018;9:2041731418817505. DOI: 10.1177/2041731418817505.
  42. Jun H, Lei D, Qifang Y, et al. Effects of concentrated growth factors on the angiogenic properties of dental pulp cells and endothelial cells: an in vitro study. Braz Oral Res 2018;32:e48. DOI: 10.1590/1807-3107bor-2018.vol32.0048.
  43. Malli Sureshbabu N, Selvarasu K, Nandakumar M, et al. Concentrated growth factors as an ingenious biomaterial in regeneration of bony defects after periapical surgery: a report of two cases. Case Rep Dent 2019;2019:7046203. DOI: 10.1155/2019/7046203.
  44. Nivedhitha MS, Jacob B, Ranganath A. Concentrated growth factor: a novel platelet concentrate for revascularization of immature permanent teeth—a report of two cases. Case Rep Dent 2020;2020:1329145. DOI: 10.1155/2020/1329145.
  45. Sureshbabu NM, Ranganath A, Jacob B. Concentrated growth factor—surgical management of large periapical lesion using a novel platelet concentrate in combination with bone graft. Ann Maxillofac Surg 2020;10(1):246–250. DOI: 10.4103/ams.ams_80_19.
  46. Fang D, Long Z, Hou J. Clinical application of concentrated growth factor fibrin combined with bone repair materials in jaw defects. J Oral Maxillofac Surg 2020;78(6):882–892. DOI: 10.1016/j.joms.2020.01.037.
  47. Zein N, Harmouch E, Lutz JC, et al. Polymer-based instructive scaffolds for endodontic regeneration. Materials 2019;12(15):2347. DOI: 10.3390/ma12152347.
  48. Seo SJ, Kim HW, Lee JH. Electrospun nanofibers applications in dentistry. J Nanomater 2016;2016(1):1–7. DOI: 10.1155/2016/5931946.
  49. Albuquerque MT, Nagata JY, Diogenes AR, et al. Clinical perspective of electrospun nanofibers as a drug delivery strategy for regenerative endodontics. Curr Oral Health Rep 2016;3(3):209–220. DOI: 10.1007/s40496-016-0103-1.
  50. Bottino MC, Kamocki K, Yassen GH, et al. Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 2013;92(11):963–969. DOI: 10.1177/0022034513505770.
  51. Palasuk J, Kamocki K, Hippenmeyer L, et al. Bimix antimicrobial scaffolds for regenerative endodontics. J Endod 2014;40(11):1879–1884. DOI: 10.1016/j.joen.2014.07.017.
  52. Pankajakshan D, Albuquerque MT, Evans JD, et al. Triple antibiotic polymer nanofibers for intracanal drug delivery: effects on dual species biofilm and cell function. J Endod 2016;42(10):1490–1495. DOI: 10.1016/j.joen.2016.07.019.
  53. Karczewski A, Feitosa SA, Hamer EI, et al. Clindamycin-modified triple antibiotic nanofibers: a stain-free antimicrobial intracanal drug delivery system. J Endod 2018;44(1):155–162. DOI: 10.1016/j.joen.2017.08.024.
  54. Ruparel NB, Teixeira FB, Ferraz CC, et al. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod 2012;38(10):1372–1375. DOI: 10.1016/j.joen.2012.06.018.
  55. Kamocki K, Nör JE, Bottino MC. Dental pulp stem cell responses to novel antibiotic‐containing scaffolds for regenerative endodontics. Int Endod J 2015;48(12):1147–1156. DOI: 10.1111/iej.12414.
  56. Chang B, Ahuja N, Ma C, et al. Injectable scaffolds: preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep 2017;111:1–26. DOI: 10.1016/j.mser.2016.11.001.
  57. Ullah F, Othman MB, Javed F, et al. Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl 2015;57:414–433. DOI: 10.1016/j.msec.2015.07.053.
  58. Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res 2015;6(2):105–121. DOI: 10.1016/j.jare.2013.07.006.
  59. Cavalcanti BN, Zeitlin BD, Nör JE. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent Mater 2013;29(1):97–102. DOI: 10.1016/
  60. Rosa V, Zhang Z, Grande RH, et al. Dental pulp tissue engineering in full-length human root canals. J Dent Res 2013;92(11):970–975. DOI: 10.1177/0022034513505772.
  61. Dissanayaka WL, Hargreaves KM, Jin L, et al. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A 2015;21(3–4):550–563. DOI: 10.1089/ten.TEA.2014.0154.
  62. Pelissari C, Paris AF, Mantesso A, et al. Apical papilla cells are capable of forming a pulplike tissue with odontoblastlike cells without the use of exogenous growth factors. J Endod 2018;44(11):1671–1676. DOI: 10.1016/j.joen.2018.08.005.
  63. Jones TD, Kefi A, Sun S, et al. An optimized injectable hydrogel scaffold supports human dental pulp stem cell viability and spreading. Adv Med 2016;2016:7363579. DOI: 10.1155/2016/7363579.
  64. Chrepa V, Austah O, Diogenes A. Evaluation of a commercially available hyaluronic acid hydrogel (Restylane) as injectable scaffold for dental pulp regeneration: an in vitro evaluation. J Endod 2017;43(2):257–262. DOI: 10.1016/j.joen.2016.10.026.
  65. Shiehzadeh V, Aghmasheh F, Shiehzadeh F, et al. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: new method and three case reports. Indian J Dent Res 2014;25(2):248–253. DOI: 10.4103/0970-9290.135937.
  66. Fukushima KA, Marques MM, Tedesco TK, et al. Screening of hydrogel-based scaffolds for dental pulp regeneration—a systematic review. Arch Oral Biol 2019;98:182–194. DOI: 10.1016/j.archoralbio.2018.11.023.
  67. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 2011;8(55):153–170. DOI: 10.1098/rsif.2010.0223.
  68. Kishen A, Hussein H. Bioactive molecule carrier systems in endodontics. Expert Opin Drug Deliv 2020;17(8):1093–1112. DOI: 10.1080/17425247.2020.1777981.
  69. Shrestha S, Diogenes A, Kishen A. Temporal-controlled release of bovine serum albumin from chitosan nanoparticles: effect on the regulation of alkaline phosphatase activity in stem cells from apical papilla. J Endod 2014;40(9):1349–1354. DOI: 10.1016/j.joen.2014.02.018.
  70. Shrestha S, Diogenes A, Kishen A. Temporal-controlled dexamethasone releasing chitosan nanoparticle system enhances odontogenic differentiation of stem cells from apical papilla. J Endod 2015;41(8):1253–1258. DOI: 10.1016/j.joen.2015.03.024.
  71. Bellamy C, Shrestha S, Torneck C, et al. Effects of a bioactive scaffold containing a sustained transforming growth factor-β1–releasing nanoparticle system on the migration and differentiation of stem cells from the apical papilla. J Endod 2016;42(9):1385–1392. DOI: 10.1016/j.joen.2016.06.017.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.