Journal of Operative Dentistry & Endodontics

Register      Login

VOLUME 5 , ISSUE 2 ( July-December, 2020 ) > List of Articles


Evaluation and Comparison of the Effect of MTA, MTA Plus, Chitosan, and Their Conjugates on Cell Viability of Human Periodontal Ligament Fibroblasts: An In Vitro Study

Madhu Singh

Citation Information : Singh M. Evaluation and Comparison of the Effect of MTA, MTA Plus, Chitosan, and Their Conjugates on Cell Viability of Human Periodontal Ligament Fibroblasts: An In Vitro Study. J Oper Dent Endod 2020; 5 (2):74-78.

DOI: 10.5005/jp-journals-10047-0097

License: CC BY-NC 4.0

Published Online: 01-12-2020

Copyright Statement:  Copyright © 2020; The Author(s).


Aim and objective: The aim and objective of this in vitro study was to gauze the effect of MTA, MTA Plus, chitosan, and their conjugates on the cell viability of human pdl fibroblasts. Materials and methods: A primary culture of human pdl fibroblasts was obtained. Materials used were MTA, MTA Plus, chitosan, and their conjugates. Methyl-thiazol-tetrazolium (MTT) colorimetric assay and Neutral Red assay were used to evaluate the cell viability of the root end filling materials after 24 hours of setting. Optical density of adherent stained biofilm was read at 570 nm using ELISA auto reader. Cell viability was evaluated as percentage of the negative control group, which represented 100% cell viability. Statistical analyses were done with one-way ANOVA and Tukey's post hoc test. Results: Test indicates that there was no cell cytotoxicity seen in Group I (MTA) and Group II (MTA Plus), whereas mild cytotoxicity was seen in Group III (chitosan). However, in Group IV (MTA–chitosan conjugate) and Group V (MTA Plus–chitosan conjugate), proliferation of fibroblasts was seen. Conclusion: Chitosan showed a synergistic effect with MTA and MTA Plus when used as a conjugate, as no cytotoxicity was seen in both the conjugates. In fact, there was proliferation of fibroblasts seen in Group IV (MTA–chitosan conjugate) and Group V (MTA Plus–chitosan conjugate).

  1. Karimjee CK, Koka S, Rallis DM, et al. Cellular toxicity of mineral trioxide aggregate mixed with an alternative delivery vehicle. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102(4):115–120. DOI: 10.1016/j.tripleo.2005.12.020.
  2. Huang FM, Tai KW, Chou MY, et al. Cytotoxicity of resin, zinc oxide-eugenol, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int Endod J 2002;35(2):153–158. DOI: 10.1046/j.1365-2591.2002.00459.x.
  3. Song M, Kim SG, Shin SJ, et al. The influence of bone tissue deficiency on the outcome of endodontic microsurgery: a prospective study. J Endod 2013;39(11):1341–1345. DOI: 10.1016/j.joen.2013.06.036.
  4. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod 2006;32(7):601–623. DOI: 10.1016/j.joen.2005.12.010.
  5. Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod 2000;26(5):288–291. DOI: 10.1097/00004770-200005000-00010.
  6. Damas BA, Wheater MA, Bringas JS, et al. Cytotoxicity comparison of mineral trioxide aggregates and endosequence bioceramic root repair materials. J Endod 2011;37(3):372–375. DOI: 10.1016/j.joen.2010.11.027.
  7. Torabinejad M, Chivan N. Clinical applications of mineral trioxide aggregate. J Endod 1999;25(3):197–205. DOI: 10.1016/S0099-2399(99)80142-3.
  8. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993;19(12):591–595. DOI: 10.1016/S0099-2399(06)80271-2.
  9. Torabinejad M, Hong CU, McDonald F, et al. Physical and chemical properties of a new root-end filling material. J Endod 1995;21(7):349–353. DOI: 10.1016/S0099-2399(06)80967-2.
  10. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. J Endod 2010;36(3):400–413. DOI: 10.1016/j.joen.2009.09.009.
  11. Moghaddame-Jafari S, Mantellini MG, Botero TM, et al. Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod 2005;31(5):387–391. DOI: 10.1097/01.don.0000145423.89539.d7.
  12. Howling GI, Dettmar PW, Goddard PA, et al. The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 2001;22(22):2959–2966. DOI: 10.1016/s0142-9612(01)00042-4.
  13. Okamoto Y, Kawakami K, Miyatake K, et al. Analgesic effects of chitin and chitosan. Carbohydr Polym 2002;49(3):249–252. DOI: 10.1016/S0144-8617(01)00316-2.
  14. Malette WG, Quigley HJ, Gaines RD, et al. Chitosan: a new hemostatic. Ann Thorac Surg 1983;36(1):55–58. DOI: 10.1016/s0003-4975(10)60649-2.
  15. Muzzarelli R, Biagini G, Pugnaloni A, et al. Reconstruction of parodontal tissue with chitosan. Biomaterials 1989;10(9):598–603. DOI: 10.1016/0142-9612(89)90113-0.
  16. Schweikl H, Schmalz G. Toxicity parameters for cytotoxicity testing of dental materials in two different mammalian cell lines. Eur J Oral Sci 1996;104(3):292–299. DOI: 10.1111/j.1600-0722.1996.tb00080.x.
  17. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J lmmunol Methods 1983;65(1–2):55–63. DOI: 10.1016/0022-1759(83)90303-4.
  18. Koh ET, McDonald F, Pitt Ford TR, et al. Cellular response to mineral trioxide aggregate. J Endod 1998;24(8):543–547. DOI: 10.1016/S0099-2399(98)80074-5.
  19. Cunha SA, Rached FJ Jr, Alfredo E, et al. Biocompatibility of sealers used in apical surgery: a histological study in rat subcutaneous tissue. Braz Dent J 2011;22(4):299–305. DOI: 10.1590/s0103-64402011000400007.
  20. Holland R, de Souza V, Nery MJ, et al. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 1999;25(3):161–166. DOI: 10.1016/s0099-2399(99)80134-4.
  21. Kokate SR, Pawar AM. An in vitro comparative stereomicroscopic evaluation of marginal seal between MTA, glass ionomer cement and biodentine as root end filling materials using 1% methylene blue as tracer. Endodontology 2012;24:36–42.
  22. Lee SJ, Monsef M, Torabinejad M. Sealing ability of mineral trioxide aggregate for repair of lateral root perforation. J Endod 1993;19(11):541–544. DOI: 10.1016/S0099-2399(06)81282-3.
  23. Ma J, Shen Y, Stojicic S, et al. Biocompatibility of two novel root repair materials. J Endod 2011;37(6):793–798. DOI: 10.1016/j.joen.2011.02.029.
  24. Klokkevold PR, Vandemark L, Kenney EB, et al. Osteogenesis enhanced by chitosan (poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol 1996;67(11):1170–1175. DOI: 10.1902/jop.1996.67.11.1170.
  25. Madihally SV, Matthew HW. Porous chitosan scaffold for tissue engineering. Biomaterials 1999;20(12):1133–1142. DOI: 10.1016/s0142-9612(99)00011-3.
  26. Zhang Y, Ni M, Zhang M, et al. Calcium phosphate chitosan composite scaffolds for bone tissue engineering. Tissue Eng 2004;9(2):337–345. DOI: 10.1089/107632703764664800.
  27. De Deus GD, Ximenes R, Gurgel-Filho ED, et al. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J 2005;38(9):604–609. DOI: 10.1111/j.1365-2591.2005.00987.x.
  28. Sharifian MR, Ghobadi M, Shokouhinejad N, et al. Cytotoxicity evaluation of Proroot MTA, Root MTA and Portland Cement on human gingival fibroblasts. Iran Endod J 2007;2(3):91–94. PMID: 24298288. PMCID: PMC3844761.
  29. Camilleri J, Ford TRP. Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 2006;39(10):747–754. DOI: 10.1111/j.1365-2591.2006.01135.x.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.