Journal of Operative Dentistry & Endodontics

Register      Login

VOLUME 4 , ISSUE 1 ( January-June, 2019 ) > List of Articles

REVIEW ARTICLE

Minimally Invasive Endodontics and Endo-endorestorative–Prosthodontic Continuum: The Right Balance?

Sekar Mahalaxmi

Keywords : Dentin biomechanics, Endodontics and endo-endorestorative–prosthodontic, Ferrule effect, Minimal invasive endodontics, Post endodontic restoration, Vertical root fracture

Citation Information : Mahalaxmi S. Minimally Invasive Endodontics and Endo-endorestorative–Prosthodontic Continuum: The Right Balance?. J Oper Dent Endod 2019; 4 (1):42-53.

DOI: 10.5005/jp-journals-10047-0075

License: CC BY-NC 4.0

Published Online: 01-12-2019

Copyright Statement:  Copyright © 2019; The Author(s).


Abstract

The ultimate goal of any operative procedure is to restore the tooth to its original form and function within the arch as well as to reestablish esthetics wherever applicable. The primary objective of the endodontic therapy is the elimination of bacteria and their by-products, pulpal remnants, and debris from the root canal system. To achieve this goal, the biomechanical aspects of the tooth structure are often compromised, leading to the questionable prognosis of the restorative factor of endodontically treated teeth (ETT). The current technological advancements in the field of endodontics that preserves more natural tooth structure and adhesive dentistry that enables better restoration of the lost tooth structure, when used in the optimal way, can pave a path for the right balance between the endodontic and restorative components of teeth. This narrative review highlights the ways in which the right balance can be achieved between the two.


PDF Share
  1. Tang W, Wu Y, et al. Identifying and Reducing Risks for Potential Fractures in Endodontically Treated Teeth. J Endod 2010;36(4): 609–617. DOI: 10.1016/j.joen.2009.12.002.
  2. Salehrabi R, Rotstein I. Endodontic treatment outcomes in a large patient population in the USA: an epidemiological study. J Endod 2004 Dec;30(12):846–850. DOI: 10.1097/01.don.0000145031.04236.ca.
  3. Gluskin AH, Peters CI, et al. Minimally invasive endodontics: Challenging prevailing paradigms. Br Dent J 2014;216(6):347–353. DOI: 10.1038/sj.bdj.2014.201.
  4. Kishen A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Topics 2006;13(1):57–83. DOI: 10.1111/j.1601-1546.2006.00201.x.
  5. Touré B, Faye B, et al. Analysis of reasons for extraction of endodontically treated teeth: a prospective study. J Endod 2011;37(11):1512–1515. DOI: 10.1016/j.joen.2011.07.002.
  6. Pradeep Kumar AR, Shemesh H, et al. Diagnosis of Vertical Root Fractures in Restored Endodontically Treated Teeth: A Time-dependent Retrospective Cohort Study. J Endod 2016;42(8): 1175–1180. DOI: 10.1016/j.joen.2016.04.012.
  7. Chan CP, Tseng SC, et al. Vertical root fracture in non-endodontically treated teeth - a clinical report of 64 cases in Chinese patients. J Endod 1998;24:678–681. DOI: 10.1016/S0099-2399(98)80154-4.
  8. Yeh CJ. Fatigue root fracture: a spontaneous root fracture in nonendodontically treated teeth. Br Dent J 1997;182:261–266. DOI: 10.1038/sj.bdj.4809363.
  9. Versluis A, Messer HH, et al. Changes in compaction stress distributions in roots resulting from canal preparation. Int Endod J 2006;39:931–939. DOI: 10.1111/j.1365-2591.2006.01164.x.
  10. Huynh N, Li FC, et al. Biomechanical Effects of Bonding Pericervical Dentin in Maxillary Premolars. J Endod 2018;44(4):659–664. DOI: 10.1016/j.joen.2018.01.002.
  11. Dietschi D, Duc O, et al. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int 2007;38:733–743.
  12. González-López S, De Haro-Gasquet F, et al. Effect of Restorative Procedures and Occlusal Loading on Cuspal Deflection. Oper Dent 2006;31(1):33–38. DOI: 10.2341/04-165.
  13. Papa J, Cain C, et al. Moisture content of vital vs endodontically treated teeth. Dental Traumatol 1994;10(2):91–93. DOI: 10.1111/j.1600-9657.1994.tb00067.x.
  14. Gale MS, Darvell BW. Dentine permeability and tracer tests. J Dent 1999;27:1–11. DOI: 10.1016/S0300-5712(98)00038-4.
  15. Yan W, Montoya C, et al. Reduction in Fracture Resistance of the Root with Aging. J Endod 2017;43(9):1494–1498. DOI: 10.1016/j.joen.2017.04.020.
  16. Pradeep Kumar AR, Shemesh H, et al. Preexisting Dentinal Microcracks in Nonendodontically Treated Teeth: An Ex Vivo Micro–computed Tomographic Analysis. J Endod 2017;43(6):896–900. DOI: 10.1016/j.joen.2017.01.026.
  17. Russell A, Chandler NP, et al. The Butterfly Effect: An Investigation of Sectioned Roots. J Endod 2013;39:208–210. DOI: 10.1016/j.joen.2012.09.016.
  18. Russell A, He LH, et al. Investigation of Dentin Hardness in roots exhibiting the Butterfly Effect. J Endod 2014;40:842–844. DOI: 10.1016/j.joen.2013.11.005.
  19. Arola D, Reprogel RK. Effects of aging on the mechanical behavior of human dentin. Biomaterials 2005;26:4051–4061. DOI: 10.1016/j.biomaterials.2004.10.029.
  20. Yan W, Montoya C, et al. Contribution of Root Canal Treatment to the Fracture Resistance of Dentin. J Endod 2019;45(2):189–193. DOI: 10.1016/j.joen.2018.10.004.
  21. Kishen A, Ramamurty U, et al. Experimental studies on the nature of property gradients in the human dentine. J Biomed Mater Res 2000;51:650–659. DOI: 10.1002/1097-4636(20000915)51:4<650::AID-JBM13>3.0.CO;2-H.
  22. Gutmann JL. Minimally invasive dentistry (Endodontics). J Conserv Dent 2013;16:282–283. DOI: 10.4103/0972-0707.114342.
  23. Nasseh AA, Trope M, et al. Minimally Invasive Endodontics: Finding the Right Balance Between “Too Much” and “Not Enough”. Compendium Jan 2016;37(1).
  24. Moore B, Verdelis K, et al. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. J Endod 2016;42:1779–1783. DOI: 10.1016/j.joen.2016.08.028.
  25. Bürklein S, Schäfer E. Minimally invasive endodontics. Quintessence Int 2015;46(2):119–124.
  26. Lacerda MF, Marceliano-Alves MF, et al. Cleaning and shaping oval canals with instrumentation systems: a correlative micro-computed tomographic and histologic study. J Endod 2017 Nov;43(11): 1878–1884. DOI: 10.1016/j.joen.2017.06.032.
  27. Silva EJ, Vieira VT, et al. Cyclic and Torsional Fatigue Resistance of XP-endo Shaper and TRUShape Instruments. J Endod 2018 Jan;44(1):168–172. DOI: 10.1016/j.joen.2017.08.033.
  28. Zuolo ML, Zaia AA, et al. Micro-CT assessment of the shaping ability of four root canal instrumentation systems in oval- shaped canals. Int Endod J 2018 May;51(5):564–571. DOI: 10.1111/iej.12810.
  29. Soares CJ, Rodrigues M, et al. How biomechanics can affect the endodontic treated teeth and their restorative procedures? Braz Oral Res 2018;32(1):169–183. DOI: 10.1590/1807-3107bor-2018.vol32.0076.
  30. Chatvanitkul C, Lertchirakarn V. Stress Distribution with Different Restorations in Teeth with Curved Roots: A Finite Element Analysis Study. J Endod 2010;36(1):115–118. DOI: 10.1016/j.joen.2009.09.026.
  31. Bier CA, Shemesh H, et al. The ability of different nickel–titanium rotary instruments to induce dentinal damage during canal preparation. J Endod 2009;35:236–238. DOI: 10.1016/j.joen.2008.10.021.
  32. M, Marending, Luder, HU, et al. Effect of sodium hypochlorite on human root dentine - Mechanical, chemical and structural evaluation. International Endodontic Journal 40(10):786–793.
  33. Zhang X, Xiao Z, et al. Biomineralization and Biomaterial Considerations in Dentin Remineralization. Journal of Operative Dentistry and Endodontics Jan–June 2016;1(1):7–12. DOI: 10.5005/jp-journals-10047-0004.
  34. Nakano F, Takahashi H, et al. Reinforcement mechanism of dentin mechanical properties by intracanal medicaments. Dent Mater J 1999;18:304–313. DOI: 10.4012/dmj.18.304.
  35. Soares CJ, Soares PV, et al. The Influence of Cavity Design and Glass Fiber Posts on Biomechanical Behavior of Endodontically Treated Premolars. J Endod 2008;34(8):1015–1019. DOI: 10.1016/j.joen.2008.05.017.
  36. Linn J, Messer HH. Effect of restorative procedures on the strength of endodontically treated molars. J Endod 1994;20:479–485. DOI: 10.1016/S0099-2399(06)80043-9.
  37. Panitvisai P, Messer HH. Cuspidal deflection in molars in relation to endodontic and restorative procedures. J Endod 1995;21:57–61. DOI: 10.1016/S0099-2399(06)81095-2.
  38. Khera SC, Goel VK, et al. Parameters of MOD cavity preparations: A 3D FEM study. Oper Dent 1991;16:42–54.
  39. Trope M, Langer I, et al. Resistance to fracture of restored endodontically treated premolars. Dent Traumatol 1986;2:35–38. DOI: 10.1111/j.1600-9657.1986.tb00120.x.
  40. Randow K, Glanz PO. On cantilever loading of vital and non-vital teeth. An experimental clinical study. Acta Odontol Scand 1986;44:271–277. DOI: 10.3109/00016358609004733.
  41. Lang H, Korkmaz Y, et al. Impact of endodontic treatments on the rigidity of the root. J Dent Res 2006;85:364–368. DOI: 10.1177/154405910608500416.
  42. Corsentino G, Pedullà E, et al. Influence of Access Cavity Preparation and Remaining Tooth Substance on Fracture Strength of Endodontically Treated Teeth. J Endod 2018;44(9):1416–1421. DOI: 10.1016/j.joen.2018.05.012.
  43. Clark D, Khademi J. Modern Molar Endodontic Access and Directed Dentin Conservation. Dent Clin North Am 2010;54(2):249–273. DOI: 10.1016/j.cden.2010.01.001.
  44. Restoration of Endodontically Treated Teeth: The Endodontist's Perspective, Part 1. AAE: Endodontics Colleagues for Excellence, 1–6. www.aae.org.
  45. Peroz I, Blankenstein F, et al. Restoring endodontically treated teeth with posts and cores–a review. Quintessence Int 2005;36(9):737–746.
  46. Zarow M, Ramírez-Sebastià A, et al. A new classification system for the restoration of root filled teeth. Int Endod J 2018;51(3):318–334. DOI: 10.1111/iej.12847.
  47. Costa AK, Xavier TA, et al. Influence of Occlusal Contact Area on Cusp Deflection and Stress Distribution. J Contemp Dent Pract 2014;15(6):699–704.
  48. Stankiewicz NR, Wilson PR. The ferrule effect: a literature review. Int Endod J 2002;35:575–581. DOI: 10.1046/j.1365-2591.2002.00557.x.
  49. Juloski J, Radovic I, et al. Ferrule effect: A literature review. J Endod 2012;38(1):11–19. DOI: 10.1016/j.joen.2011.09.024.
  50. Santos-Filho PCF, Veríssimo C, et al. Influence of ferrule, post system, and length on biomechanical behavior of endodontically treated anterior teeth. J Endod 2014;40(1):119–123. DOI: 10.1016/j.joen.2013.09.034.
  51. Fedorowicz Z, Carter B, et al. Single crowns versus conventional fillings for the restoration of root filled teeth (Review). Cochrane Database Syst Rev 2012 May 16(5):CD009109. DOI: 10.1002/14651858.CD009109.pub2.
  52. Kovarik RE, Breeding LC, et al. Fatigue life of three core materials under simulated chewing conditions. J Prosthet Dent 1992;68:584–590. DOI: 10.1016/0022-3913(92)90370-P.
  53. Larson TD, Jensen JR. Microleakage of composite resin and amalgam core material under complete cast crowns. J Prosthet Dent 1980;44:40–44. DOI: 10.1016/0022-3913(80)90044-X.
  54. Kanca J 3rd. Dental adhesion and the All-Bond system. J Esthet Dent 1991;3:129–132. DOI: 10.1111/j.1708-8240.1991.tb00984.x.
  55. Donald HL, Jeansonne BG, et al. Influence of dentinal adhesives and a prefabricated post on fracture resistance of silver amalgam cores. J Prosthet Dent 1997;77:17–22. DOI: 10.1016/S0022-3913(97)70201-4.
  56. Lo CS, Millstein PL, et al. In vitro shear strength of bonded amalgam cores with and without pins. J Prosthet Dent 1995;74:385–391. DOI: 10.1016/S0022-3913(05)80379-8.
  57. Braem MJ, Lambrechts P, et al. In vitro fatigue behavior of restorative composites and glass ionomers. Dent Mater 1995;11:137–141. DOI: 10.1016/0109-5641(95)80049-2.
  58. Dionysopoulos P, Kotsanos N, et al. Secondary caries formation in vitro around fluoride-releasing restorations. Oper Dent 1994;19:183–188.
  59. Wiegand A, Buchalla W, et al. Review on fluoride- releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2007;23: 343–362. DOI: 10.1016/j.dental.2006.01.022.
  60. Luthira A, Srirekha A, et al. The reinforcement of polyethylene fiber and composite impregnated glass fiber on fracture resistance of endodontically treated teeth: An in vitro study. J Conserv Dent 2012;15:372–376. DOI: 10.4103/0972-0707.101914.
  61. Sah SP, Datta K, et al. Evaluation of Fracture Resistance of Endodontically Treated Maxillary Premolars Restored with Three Different Core Materials: An In Vitro Study. Int J Oral Health Med Res 2018;5(6):31–37.
  62. Dietschi D, Duc O, et al. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int 2008;39(2):117–129.
  63. Petersen RC. Discontinuous fiber-reinforced composites above critical length. J Dent Res 2005;84:365–370. DOI: 10.1177/154405910508400414.
  64. Xu HH, Quinn JB, et al. Effects of different whiskers on the reinforcement of dental resin composites. Dent Mater 2003;19: 359–367. DOI: 10.1016/S0109-5641(02)00078-7.
  65. Schreiber CK. Polymethylmethacrylate reinforced with carbon fibres. Br Dent J 1971;130:29–30. DOI: 10.1038/sj.bdj.4802623.
  66. Hamza TA, Rosensteil SF, et al. The effect of fiber reinforcement on the Fracture toughness and flexural strength of provisional restorative resins. J Prosthet Dent 2004;91:258–264. DOI: 10.1016/j.prosdent.2004.01.005.
  67. Eapen AM, Amirtharaj LV, et al. Fracture Resistance of Endodontically Treated Teeth Restored with 2 Different Fiber-reinforced Composite and 2 Conventional Composite Resin Core Buildup Materials: An In Vitro Study. J Endod 2017;43(9):1499–1504. DOI: 10.1016/j.joen.2017.03.031.
  68. Schliebe LRO, Braga SSL, et al. The new generation of conventional and bulk-fill composites do not reduce the shrinkage stress in endodontically-treated molars. Am J Dent 2016 Dec;29(6):333–338.
  69. Reeh ES, Douglas WH, et al. Stiffness of endodontically treated teeth related to restoration technique. J Dent Res 1989;68:1540–1544. DOI: 10.1177/00220345890680111401.
  70. Cheung W. A review of the management of endodontically treated teeth: Post, core and the final restoration. J Am Dent Assoc 2005 May;136:611–619. DOI: 10.14219/jada.archive.2005.0232.
  71. Vinola MJS, Balasubramanian S, et al. “ENDOCROWN”—An Effective Viable Esthetic Option for Expurgated Endodontically treated Teeth: Two Case Reports. J Oper Dent Endod 2017;2(2):97–102. DOI: 10.5005/jp-journals-10047-0046.
  72. Zhou L, Wang Q. Comparison of fracture resistance between cast posts and fiber posts: a meta-analysis of literature. J Endod 2013;39(1):11–15. DOI: 10.1016/j.joen.2012.09.026.
  73. Ambica K, Mahendran K, et al. Comparative evaluation of fracture resistance under static and fatigue loading of endodontically treated teeth restored with carbon fiber posts, glass fiber posts, and an experimental dentin post system: An in vitro study. J Endod 2013;39(1):96–100. DOI: 10.1016/j.joen.2012.07.003.
  74. Kathuria A, Kavitha M. Ex vivo fracture resistance of endodontically treated maxillary central incisors restored with fiber-reinforced composite posts and experimental dentin posts. J Conserv Dent 2011;14:401–405. DOI: 10.4103/0972-0707.87211.
  75. Tay FR, Pashley DH. Monoblocks in Root Canals: A Hypothetical or a Tangible Goal. J Endod 2007;33(4):391–398. DOI: 10.1016/j.joen.2006.10.009.
  76. Ferrari M, Goracci C, et al. An investigation of the inter-facial strengths of methacrylate resin-based glass fiber post-core build-ups by their components. J Adhes Dent 2006 Aug;8(4):239–245.
  77. Schwartz RS. Adhesive Dentistry and Endodontics. Part 2: Bonding in root canal system - the promise and the problems: A review. J Endod 2006;32:1125–1134. DOI: 10.1016/j.joen.2006.08.003.
  78. Manimaran VS, Srinivasulu S, et al. Application of a proanthocyanidin agent to improve the bond strength of root dentin treated with sodium hypochlorite. J Conserv Dent 2011;14:306–308. DOI: 10.4103/0972-0707.85822.
  79. Lai SC, Mak YF, et al. Reversal of compromised bonding to oxidized etched dentin. J Dent Res 2001;80:1919–1924. DOI: 10.1177/00220345010800101101.
  80. Salameh Z, Sorrentino R, et al. Fracture Resistance and Failure Patterns of Endodontically Treated Mandibular Molars Restored Using Resin Composite With or Without Translucent Glass Fiber Posts. J Endod 2006;32(8):752–755. DOI: 10.1016/j.joen.2006.02.002.
  81. Al-Omiri MK, Mahmoud AA, et al. Fracture Resistance of Teeth Restored with Post-retained Restorations: An Overview. J Endod 2010;36:1439–1449. DOI: 10.1016/j.joen.2010.06.005.
  82. Dietschi D, Bouillaguet S, et al. Restoration of endodontically treated teeth. Berman & Hargreaves’ Cohen's Pathways of the Pulp, 10th ed., Elsevier; 2010. pp. 789–793.
  83. Mohammadi N, Kahnamoii MA, et al. Effect of Fiber Post and Cusp Coverage on Fracture Resistance of Endodontically Treated Maxillary Premolars Directly Restored with Composite Resin. J Endod 2009;35(10):1428–1432. DOI: 10.1016/j.joen.2009.07.010.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.